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Abstract

Penetrant diffusion in semicrystalline polyethylene was simulated by first generating model spherulitic systems, and then, in the same systems,

generating penetrant trajectories. Spherulitic growth was mimicked with an algorithm able to generate structures comparable to those observed in

polyethylene. Current limitations in the number of lattice points of the system restricted the minimum amorphous layer thickness, which in turn

limited the volume crystallinity range attainable to 0–35% and the crystal width-to-thickness ratio to %15. An on-lattice Monte–Carlo simulation

assessed penetrant diffusion and the geometrical impedance factor was calculated and compared with the results obtained by the analytical method

according to the Fricke theory. The combined effect of volume crystallinity and the crystal width-to-thickness ratio on the diffusivity was studied.

A linear relationship was obtained between the geometrical impedance factor and the volume crystallinity at constant crystal width-to-thickness

ratio, in accordance with the Fricke theory. The Fricke theory, however, underestimated the blocking effect of crystals of a given crystal width-

to-thickness ratio, simply because it did not encounter the anisotropic lateral shape of the crystals and the continuous character of the branched

lamellar crystals.

q 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The diffusion of small molecules in semicrystalline

polymers is confined to the amorphous component, even

though the smallest molecules (e.g. helium) can penetrate the

polymer crystals [1]. The penetrant molecules are forced to

circumvent the crystals and the lengthening of the diffusive

trajectory is quantified by the geometrical impedance factor (t)

tZ
Da

D!b
(1)

where D is the penetrant diffusivity in the semicrystalline

material, Da the penetrant diffusivity in the fully amorphous

analogue and b the immobilization factor [2]. The factor b,

which expresses the reduced segmental mobility of the

constrained amorphous chain segments in the vicinity of a

crystal surface, is conveniently described by free volume

theory [3–11]. This paper addresses, however, only the purely
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geometric effect of the crystals expressed by the geometrical

impedance factor, by comparing results obtained by simulation

with those obtained by the Fricke theory. The immobilization

factor was set to unity in all these calculations.

The structural dependence of the geometrical impedance

factor of semicrystalline polymers has been predicted by

empirical methods, i.e. curve fitting [2], theoretical arguments

[2,11–16], and simulation [17,18], Analytical expressions have

been derived to calculate the geometrical impedance factors in

semicrystalline polymers by considering the crystallinity and

the geometry of the crystals. These models assume that the

polymer is composed of two components: impenetrable

crystals and permeable amorphous material. Furthermore,

they assume a simple, non-continuous geometry of the crystals.

The Fricke theory [16], which was derived to explain the

electrical conductivity in a two-component system of oblate

spheroids in a continuous matrix, was later adapted by

Michaels and Bixler [2] to apply to penetrant diffusion in a

semicrystalline polymer
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Fig. 1. The definition of the basic crystal element with a specified crystal

thickness (Lc) and width (W). The arrow represents the direction of growth.
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where vc is the volume crystallinity, Lc the crystal thickness

and W the crystal width.

Simulation of diffusion has been widely used to predict

permeation properties of polymers. Penetrant trajectories have

been generated in fully amorphous polymers using molecular

dynamics simulation [19–22]. Unfortunately, currently avail-

able molecular dynamics systems involve too a small material

volume and ignore the multiphase character of the semicrystal-

line polymers, and thus give an inadequate description of the

diffusion in these materials. Müller-Plathe [17] and Hadgett

et al. [18] used a mesoscale approach to model the effect of

crystallinity and crystal shape on the diffusivity. These studies

were based on Monte–Carlo-generated random walks in both

two- and three-dimensional lattices. Both studies considered

the crystals as a group of non-percolating platelets embedded in

an amorphous matrix. The results obtained by this simulation

were essentially in accordance with the predictions made by

the Fricke theory [18].

Hitherto reported mesoscopic simulations of the diffusion in

semicrystalline polymers considered the crystals as isolated

platelets, basically equiaxed in the fold surface plane. This is

not a realistic model of the lamellar structure in polyethylene

spherulites. It was realised many years ago that the number of

crystal lamellae intersecting the growth boundary must be

proportional to the square of the radial distance from the centre

of the spherulite. This scale law is readily understood by simple

arguments: (i) the crystallinity shows in most cases only a

moderate variation within a single spherulite; and (ii) the

dimensions of the crystals as viewed along the growth direction

show only moderate variation within a single spherulite. These

generalized facts imply that the number of crystals that

intersect the growth boundary must be proportional to the

boundary surface area, which in turn is proportional to the

square of the radial distance from the spherulite centre. One

solution to this problem is to picture the lamellar structure as

continuous and highly branched, and to assume that the

branches are at an angle with respect to the stem. David Bassett

and associates at the University of Reading, UK were greatly

involved in solving this problem using electron microscopy of

permanganic etched samples; a method to reveal polyethylene

crystals in melt-crystallized samples, which was developed by

the Reading group [23,24]. They provided not only the missing

morphological key element, branching with diverging crystal

arms originating from a screw dislocation [25], but also the

cause for the splaying, ciliation [26–28]. The extensive work of

the Reading group, not only reporting the afore-mentioned

findings, but also providing a wealth of additional information

about the morphology of polyethylene, has been our inspiration

and it has provided the information that has been used for

spherulite building by simulation. A recent review of this and

related topics has been written by two of the authors of this

paper [29].

This paper presents the results of Monte–Carlo simulations

generating penetrant trajectories in a spherulite-like

morphology. The growth of the crystal nucleus into a

spherulitic morphology using algorithms for lamellar branch-

ing and splaying generated the structure, which was the basis
for the Monte–Carlo simulation of the penetrant diffusion.

Morphological features, e.g. the spherulite radius, the crystal

width-to-thickness ratio and the branching angle were system-

atically varied. Penetrant random walks simulated the

diffusion, and the geometrical impedance factor was obtained

by comparison with trajectories obtained in a fully amorphous

model system. The results obtained by simulation were

compared with the results obtained by the Fricke theory.
2. Theory and simulations

2.1. Spherulite growth by simulation

The simulations were performed using MATLAB 6 on a

Macintosh Double 2 GHz Power PC G5 and a Pentium P3

processor PC. Even though care was taken to simulate the

spherulite growth process as realistically as possible a few

simplifications were still necessary. The growing crystal was

assumed to have a rectangular lateral habit with a fixed width

(W) and crystal thickness (Lc). The growth process was

initiated from two opposite faces of a single crystal lamella.

The crystal growth occurred in discrete steps by adding an

infinitely stiff element, with the same width and thickness as

the lamella nucleus and with a predefined length (gs). This

element is displayed in Fig. 1 together with the definitions of

the local coordinates used to control the growth process.

The element was defined by a set of numbers, the ‘key

point’, that describe position (Fig. 1; point P), local coordinate

system and growth direction. In addition, information

concerning the activity status of the growing crystal lamella

was recorded in the key point. Each key point was stored in a

matrix (‘kps’) to enable retrieval of the complete growth

history for further processing.

A cubic lattice was centred on the single initial lamella and

the spherulite growth was prohibited outside a sphere inscribed

in the cube, hence each cube contained one spherulite. The

points of the cubic lattice were assigned the values one or zero,

depending on whether they were located inside or outside the

crystalline volume. The crystal thickness was always set to two

lattice unit distances. The lattice unit distance is defined as the

distance between two adjacent lattice points along the three

orthogonal directions of the cubic lattice. The width of the

crystal blocks was varied in the different simulations from 10 to

30 lattice unit distances. The values of the lattice points were

stored in a ‘box3D’matrix. This matrix could be scanned at

high speed, e.g. for assessing the degree of crystallinity and its

spatial distribution, or for penetrant diffusion purposes.
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The local degree of crystallinity was assessed by defining cubes

with 20 lattice unit edges and calculating the fraction of

crystalline lattice units (fraction of lattice points with value 1)

within that volume. The fully grown spherulite box thus

contained 3375 of these small boxes used for local crystallinity

assessment.

The growth of the crystal proceeded until it impinged on

other crystals. Hence, the length of a crystal was not decided a

priori. The crystal growth occurred basically free from cubic

lattice. The placement of the lattice occurred in parallel with

the growth of the crystals. An algorithm tested continuously

that the space was free for adding a crystal block to the growing

crystal. This algorithm was based on the cubic lattice, i.e. if any

lattice point within the volume of the growth crystal block was

occupied by another crystal (valueZ1), the growth of the

crystal was inhibited.

The branching process was described by five parameters.

Fig. 2 shows the definition of the two vectors u and v that

characterize the orientation of the branching crystal. Two

angles identify the direction u of the lamellar branch: (a) the

angle between the z-axis and the projection (v) of u on the yz

plane, this angle being referred to as the splay angle; and (b) the

angle between v and u, referred to as the split angle. The splay

angle was varied between 20 and 408 and the split angle was

varied between 15 and 308 in accordance with the morpho-

logical features characteristic of polyethylene reported by

Bassett et al. [30–33]. The branching crystal also undergoes

twisting about u (Fig. 2), which is parameterized by the length

along the growth direction for making a 1808 twist about u. The

set of parameters was made in accordance with the

morphological information provided by Patel and Bassett

[34], the major part of the twist occurring near the lamellar

branch region.
Fig. 2. Details of the lamellar branching. Vectors z and u are the growth

directions of the initial and the branching lamella.
The frequency of lengthening (without branching or

twisting), branching and twisting were set by the program by

means of probability parameters, i.e. statistical weights; the

sum of the three is equal to 1. The structure building by

lengthening, branching or twisting was accomplished using

random numbers.

The formation of the primary lamellae (branched, continu-

ous structure originating from one crystal) constituted the first

part of the growth process. The desired crystallinity was

obtained by filling the remaining free space with ‘new’

secondary lamellae, which grew from the already existing

primary lamellae (Fig. 3).

The morphological parameters that could be varied in the

growth process were: crystal width, crystal thickness, branch

and twist angles, minimum amorphous layer thickness and

spherulite radius.

The secondary growth processes were needed to obtain a

spherulite with uniform spatial distribution of crystals and the

degree of crystallinity was evaluated continuously by

considering the spherulitic growth to occur in steps through

concentric shells. In most of the structures simulated six

concentric shells were used. Each shell had a thickness of 25

lattice unit distances. The lamellae grew from one shell

boundary to the next. If the crystallinity in a shell (control

volume) was within acceptable limits (G10% of the average

volume crystallinity), the growth information in that shell was

saved and the lamellae were allowed to continue to grow into

the next shell. Otherwise, the growth in the shell was

regenerated. A continuous spherulitic growth was ensured by
Fig. 3. (a) Initial stage of crystallisation with primary lamellae; (b) The

formation of secondary lamellae (shown in darker colour).
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restarting each shell-wise growth from the active ends of the

existing lamellae in the previous shell.
2.2. Simulation of penetrant diffusion

The trajectory of a penetrant molecule was simulated with a

lattice Monte–Carlo based random walk. The position of the

penetrant was determined relative to a fixed reference frame

(Lagrangian approach). The penetrant was allowed to move,

with the same probability, to any of the nearest-neighbour sites.

Each step was determined on the basis of a random number.

The move was rejected if the lattice site was crystalline but

the time step was still counted, as suggested by Müller-Plathe

[17] and Hadgett et al. [18]. A continuous system of impinged

spherulites was obtained by using spherical boundary

conditions and wrapped coordinates. A penetrant molecule

intersecting the spherulite boundary re-entered on the

diametrically opposite position of the spherulite. The penetrant

trajectory was obtained by unwrapping its coordinates.
Fig. 4. A fully grown spherulite.

2.3. Calculation of the penetrant diffusivity and the geometrical

impedance factor

The penetrant diffusivity (D) was calculated from the

Einstein equation [35]

DZ
limt/N rðtÞKrð0Þð Þ2

� �
6t

(3)

where r is the displacement vector and t is time. The simulation

had to be sufficiently long to ensure that any memory effects

were absent and that the mean square-displacement versus

t-curve was linear. In order to improve the statistics, each new

penetrant position was considered as a start position for a new

trajectory. The calculation of the penetrant diffusivity in each

spherulite structure was based on 100 trajectories, each starting

in a random-generated point and each consisting of 105 steps.

The displacements are expressed in lattice units and the time

scale is given as the number of performed diffusive steps.

The geometrical impedance factor (t) of the spherulite-like

structure thus built was determined according to Eqs. (1) and

(2). The diffusivity data inserted in Eq. (1) was obtained by

simulation using semicrystalline lattice (D) and a lattice

without crystals (Da). The factor b was set to unity in the

calculations. The same structural parameters, volume crystal-

linity and crystal geometry (Lc and W), were inserted in Eq. (2)

to calculate t according to the Fricke theory.
Fig. 5. Simulated electron micrograph of stained structure from a mature

spherulite.
3. Results and discussion

3.1. Spherulite structure

A fully grown spherulite is displayed in Fig. 4. The variation

in the volume crystallinity in different regions of the spherulite

is within the tolerances G10% of the average volume

crystallinity. The morphology was evaluated by analysing

sections of the ‘box3D’ matrix. By using a grey-scale rather
than a binary black and white, it was possible to mimic the

variation in contrast that arises in electron micrographs of

chlorosulphonated sections due to the fact that the crystals are

oriented at different angles to the section surface. By summing

the number of crystalline lattice points in the ‘box3D’-matrix

in the thickness direction for each xy coordinate and assigning

a certain grey value to it, it was possible to obtain a two-

dimensional grey scale-surface. Regions with a sharp black-

to-white boundary indicated that the normal to the fold surface

was parallel to the cut section surface. Fig. 5 shows a cross-

section of a spherulite obtained in this way. The similarity

between the simulated structure and the experimentally



Fig. 7. The volume crystallinity as a function of the chosen split and splay

angles for (C)W/Lc Z5, (B)W/Lc Z7.5, (-)W/Lc Z10 and (,)W/Lc Z15.
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observed structure of polyethylene, in this case a permanganic-

etched sample, is striking (Fig. 6(a) and (b)).

The crystal width-to-thickness ratio (W/Lc) ratio was

varied between 5 and 15. The volume crystallinity was

controlled by variation of the number of secondary growth

stages, i.e. by setting the minimum amorphous layer

thickness, the splitting and the splaying angles. The

numerics—a lattice is placed ‘on’ the built spherulite

structure with a maximum of 3!107 lattice points—sets

the lower limit of the amorphous layer thickness to Lc.

Hence, the maximum attainable volume crystallinity is 50%.

In practice, however, the packing of the crystals

never reached this crystallinity because of a lack of perfect

orientation. Fig. 7 shows that a high splay angle was more

effective than a high split angle in reducing the volume

crystallinity. However, equally important was the W/Lc ratio,

since the attainable volume crystallinity decreased with
Fig. 6. Comparison between a simulated structure (a) and an electron

micrograph of a replica of a permanganic-etched poly(ethylene-co-octene) (b).

The gs was 2 lattice units.
increasing W/Lc: W/LcZ5, vcZ19–35%; W/LcZ7.5, vcZ20–

24%; W/LcZ10, vcZ11–18%; W/LcZ15, vcZ10–18%. The

simulations performed with crystals with W/LcZ15 yielded

spherulites with a considerable internal variation in crystal-

linity. Mattozzi et al. [9] reported for a series of

homogeneous poly(ethylene-co-octene)s W/Lc values between

21 and 338. The samples with low crystallinity showed the

highest values. The polymer with W/LcZ21 had a mass

crystallinity of 78%. Hence, the built spherulites are not

perfect copies of the real structure. The crystal ribbons have

too low W/Lc values at a given volume crystallinity and

spherulites with volume crystallinities greater than 35%

cannot be generated. The structures built are therefore

referred to as only spherulite-like.

Various actions would increase the crystallinity range

attainable and would improve the structure building. The use

of a finer lattice placed on the built structure would enable the

setting of lower minimum amorphous layer thicknesses and

thus higher crystallinities would be attained. The simulated

crystals are infinitely stiff, and a modification to permit bending

would provide a means to pack the crystals more efficiently.

The constant width of the crystal ribbons may be relaxed;

crystal growth along the a-axis must be possible and this would

allow crystals with higher crystal width-to-thickness ratio to be

used. The currently used starting structure with only one flat

crystal block might also be changed.
3.2. Penetrant diffusivity

Fig. 8 shows the mean square displacement of a penetrant

molecule versus time based on 100 random walks of 105 steps

each in a spherulitic system with a cube side length of 301

lattice points together with the mean squares of the three

orthogonal components of the displacement. Each random

walk was started at a randomly chosen amorphous lattice point.

The slope coefficient of the mean square displacement—time

line was used to calculate the diffusivity according to Eq. (3).



Fig. 8. Mean square displacement hr2i in (lattice units)2 as a function of time (in

number of time steps) for a penetrant molecule doing 100 trajectories, each

trajectory consisted of 105 steps (thick line). The displacements along the three

Cartesian coordinate axes, hx2i, hy2i and hz2i, sampled from the same trajectories

are shown by the thin lines.

Fig. 10. Effect of box size on the diffusivity in a fully amorphous lattice. The

continuous line shows the average of the diffusivity values obtained.

A. Mattozzi et al. / Polymer 47 (2006) 5588–5595 5593
The goodness of the linear fit indicated the reliability of

the calculated diffusivity. The mean square displacement

curves along the three orthogonal directions were practically

identical (Fig. 8). These data were averages based on 100

trajectories and the equality of the square displacements along

the three orthogonal axes was expected. The individual

penetrant trajectories showed a marked difference in the square

displacements between the different orthogonal axes after an

initial period (corresponding to w100 jumps) of approximate

equality between the three orthogonal square displacements

(Fig. 9); the length scale of the diffusive process of 100 jumps

is six lattice units, corresponding approximately to the size of

the interlamellar distance. Hence, the motion within this

threshold must be isotropic. On the times scales corresponding

to from 100 to at least 300 jumps, matching length scales

between 6 and 15 lattice units, hence in the size of lamellar

width, the penetrant molecule motion was slower along at least
Fig. 9. The ratio between the maximum and the minimum square displacements

(along x, y and z) for single penetrant molecule trajectory as a function of

diffusive time (in number of time steps). System characteristics: volume

crystallinityZ27.9%, crystal thicknessZ2 lattice units. The standard

deviations of the average data based on 30 trajectories were as follows:

timeZ50, 0.37; timeZ100, 0.72; timeZ150; 1.33; timeZ200, 1.50; timeZ
250, 1.83; timeZ300, 2.00.
one axes. This anisotropic diffusion is believed to be due to

the blocking effect of the crystals. It is believed that diffusion

again becomes isotropic on even longer time/length scales.

Generating penetrant trajectories in a cube with only

amorphous lattice points having different side lengths tested

the effect of the spherical boundary condition on the diffusivity

values obtained. The diffusivity was practically unaffected by a

change in the size of the system, which indicated that the

boundary conditions were adequate (Fig. 10). The average

diffusivity was 0.167 with a RMS variation equal to 0.002

(1.5%).
3.3. Penetrant diffusivity as a function of volume crystallinity

and crystal width-to-thickness ratio

Fig. 11 shows the geometrical impedance factor t as a

function of the volume crystallinity for a group of spherulitic

structures with W/Lc adjusted to 5 and a cube side length

equal to 301 lattice points. The analytical equation (Eq. (2))
Fig. 11. The geometrical impedance factor as a function of volume crystallinity

for a series of samples with W/Lc Z5 and cube side length equal to 301 lattice

points. The continuous line was obtained by fitting Eq. (2) to the data obtained

by simulation; the optimum value of the adjustable parameter (W/Lc) became

9.6. The dotted line shows the predicted values for the geometrical impedance

factor for W/Lc Z5 according to Eq. (2). Parameter settings: splay angleZ208;

split angleZ308; gsZ2 lattice units.



Fig. 13. Effect of spherulite radius on the penetrant diffusivity expressed in the

effective W/Lc ratio. The crystal ribbons had a W/Lc Z5. The line shows the

average of the data obtained.

Fig. 12. The geometrical impedance factor as a function of volume crystallinity

for systems with W/LcZ7.5 (C; the line was obtained by fitting of Eq. (2); the

optimum W/LcZ10) and W/LcZ10 (B; the line was obtained by fitting of Eq.

(2); the optimum W/LcZ13). The cube side length of structure included 301

lattice points; the gs was two lattice units.
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and the simulations both yielded a linear relationship between

the geometrical impedance factor and the volume crystallinity

(Fig. 11). The t data obtained by simulation were, however,

significantly higher than the values predicted by the Fricke

theory (with W/LcZ5). By treating the W/Lc ratio as an

adjustable parameter, it was possible to fit Eq. (2) to the t data

obtained by simulation; in this case, the ratio W/Lc became

equal to 9.6. Obviously, the Fricke theory underestimated the

geometrical impedance factor of the crystals by not considering

that the crystals were significantly larger along the spherulite

radial direction than in the perpendicular direction. The Fricke

theory also underestimated the systems with W/Lc ratios of 7.5

and 10 (Fig. 12). The systems with W/Lc ratios of 15 showed a

geometrical impedance factor lower than that predicted by the

Fricke theory. This unexpected result was attributed to the

presence a large and continuous pockets of amorphous material

in the simulated structures.

The effect on the penetrant diffusivity of the structure

variation along the spherulite radius was determined by

dividing a built spherulite into four concentric spheres with

different radii and calculating the diffusivity within each

sphere. A spherulite that showed a low variation (G1%) in the

crystallinity along the radius was used. Fig. 13 shows the

effective W/Lc ratio of the structures according to the Fricke

theory plotted as a function of the spherulite radius. The

average effective W/Lc ratio was 9.8 and the RMS was 0.8

(7%). Hence, it is evident that the spherulite radius had only a

negligible effect on the diffusivity. The establishment of a

constant geometrical impedance factor already for the

concentric shell with the smallest radius indicated that the

‘extra’ blocking effect due to the fact that the crystals were

growing ‘continuously’ along the radial direction was

established already at the early stage of spherulite growth.

4. Conclusions

An algorithm to generate spherulite-like arrangements of

crystal lamellae was developed. Crystals were growing from a

central nucleus in the spherulite radius direction. Crystal
branching and splaying and secondary crystal nucleation

yielded a uniform crystallinity along the spherulite radius.

Current limitations in the number of lattice points of the system

restricted the minimum amorphous layer thickness, which in

turn limited the crystallinity range attainable to 0–35% and the

crystal width-to-thickness ratio to %15. The penetrant

trajectories performed by on-lattice Monte–Carlo simulation

on the built spherulitic structure obeyed the Einstein equation

even after short periods of diffusive time. The statistics

obtained from single penetrant molecule trajectories indicated

an anisotropic diffusive motion at intermediate times scales,

which is believed to be due to blocking effect of the crystals.

The crystallinity dependence of the geometrical impedance

factor at a given crystal width-to-thickness ratio was linear,

which is in accordance with the prediction made by the Fricke

theory. However, the Fricke theory (for a given crystal width-

to-thickness-ratio) underestimated the geometrical impedance

factor, which can be explained by the continuity of the crystals

from the centre of the spherulite to its periphery.
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